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We start with training a classifier
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Training data



We do a bit testing....

Correct prediction
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We now evaluate a model

—>‘ Evaluation ‘
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s this way of evaluation feasible?
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s this way of evaluation feasible?

* No.... We can’t calculate a classifier accuracy!!

Suppose we deploy our cat-dog classifier to a
swimming pool

Ground truths not provided



We encounter this problem too
many times in CV applications....

* Deploy a RelD model to a new community
* Deploy face recognition in an airport

* Deploy a 3D object detection system to a new city

We can’t quantitatively measure the performance of our
model like we usually do!!

Unless we annotate the test data..., but environment will
change over time.... We need to annotate test data again




Formally, we want to solve:
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Given
- A training dataset We want to estimate:

- A classifier trained on this dataset  Classification accuracy on the
- A test set without labels test set



Our idea

Training set Testset 1 Test set 2 Test set 3
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Negative correlation between recognition accuracy and domain gap




Our idea

Known (from existing literature)

Larger domain gap -> lower recognition accuracy

Unknown

Can we quantify this relationship?

A regression problem!



Some experiments
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‘ Every point is a dataset ‘
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Fréchet distance

Domain gap between a training set and test sets




digit classification
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e How can we have MANY datasets?

0

Recognition accuracy (%)
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Fréchet distance

* How to obtain the recognition accuracy for each
dataset?

e Dataset representation
* Fréchet distance?
e Other representations?

* We use regression to relate dataset representation
with recognition accuracy.



How can we have MANY datasets?

digit classification
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* Using image transformations
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How to obtain the recognition
accuracy for each dataset?

meta-dataset

A
- sample set 2

sample set 1

y sample set 3
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Labels of the sample sets are inherited from the seed set.

Given a classifier, the recognition accuracy on these sample
sets can be easily calculated.



Dataset representation

* Method 1: Fréchet distance (FD) between a sample
set and the original training set

flz'nea'r — FD(Dom’aD) — Hll'ori — IJ'HS T TT(ZOM + X — 2(207"@2))%

e FD: distribution difference between two domains
* Including mean and covariance
* Dimension of fjjeqr: 1

* We thus can use linear regression to predict accuracy

Alinear — Alinear(.f) = W1 flinea'r + Wo



Dataset representation

* Method 2: FD+mean+sum(covariance)

fneural — [flinea’r; 122 U]

* We calculate o by taking a weighted summation of
each row of X' to produce a single vector

* Dimension of fjjneqr: 2d + 1

* d is the dimension of an image feature

* We use neural network regression

Uneural — Aneural(.fneural)



Experiment

Training set Seed set

MNIST training set MNIST test set

COCO training set COCO validation set




Experiment

* We predict the classifier accuracy on five real-world
datasets

ImageNet
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* We use mean squared error (MSE) to evaluate the
accuracy of recognition accuracy prediction.



Experiment

Digits Natural images
Method SVHN USPS | MSEJ] | Pascal Caltech ImageNet | MSE]
Ground-truth accuracy | 25.46 64.08 0 86.13  93.40 88.83 0




Experiment

Digits Natural images
Method SVHN USPS | MSEJ] | Pascal Caltech ImageNet | MSE]
Ground-truth accuracy | 25.46 64.08 0 86.13  93.40 88.83 0

Confidence (7 = 0.8) 7.97 588 | 16.03 | 84.32 90.78 86.50 1.32
Confidence (7 = 0.9) 37.22 27.95| 20.55 | 78.61 &87.71 87.71 4.02

“Confidence”: a simple pseudo label method.

If the maximum value of the softmax vector is greater than 7,
we view this sample as correctly classified.



Experiment

Digits Natural images
Method SVHN USPS | MSEJ] | Pascal Caltech ImageNet | MSE]
Ground-truth accuracy | 25.46 64.08 0 86.13  93.40 88.83 0
Confidence (7 = 0.8) 797 5.88 | 16.03 | 84.32 90.78 86.50 1.32
Confidence (7 = 0.9) 37.22 27.95| 20.55 | 78.61 87.71 87.71 4.02
Linear reg. 26.28 50.14 | 6.98 | 83.87 79.11 83.19 4.98




Experiment

Digits Natural images
Method SVHN USPS | MSEJ] | Pascal Caltech ImageNet | MSE]
Ground-truth accuracy | 25.46 64.08 0 86.13  93.40 88.83 0
Confidence (7 = 0.8) 797 5.88 | 16.03 | 84.32 90.78 86.50 1.32
Confidence (7 = 0.9) 37.22 27.95| 20.55 | 78.61 87.71 87.71 4.02
Linear reg. 26.28 50.14 | 6.98 | 83.87 79.11 83.19 4.98
Neural network reg. 27.52 064.11 | 1.03 | 87.76  89.39 91.82 1.75

The two regression methods are stable and quite accurate.



Test sets undergo new transformations

* We add new image transformations to the test sets.

* Random erasing / cutout, Shear, Equalize and
ColorTemperature

OLinear regression  @Neural network regression
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Test sets undergo new transformations

* We add new image transformations to the test sets.

* Random erasing / cutout, Shear, Equalize and
ColorTemperature
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Test sets undergo new transformations

* We add new image transformations to the test sets.
* Random erasing / cutout, Shear, Equalize and

ColorTemperature
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Test sets undergo new transformations

* We add new image transformations to the test sets.
* Random erasing / cutout, Shear, Equalize and

ColorTemperature
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Predicting the accuracy of various classifiers
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Predicting the accuracy of various classifiers

1363 . . :
= 140 F — OLinear regression BNetwork regression
£ 120 F
g 100
() L 7.18
. 8.0 o — 6.345 95
5 60 F 0 475
S 40 k| |2 . o
= 225 63
< 20 F |—| I—l 0.55
—

0.0
ImageNet Pascal  Caltech

85.00% 82.58% 92.49%
Desenet-121

ImageNet Pascal Caltech
GT. Accuracy (%) 88.83% 86.13% 93.40%

ResNet-50




Predicting the accuracy of various classifiers
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Some important parameters

* The number of synthetic datasets (sample sets)
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Some important parameters

* The size of each synthetic dataset (sample set)
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Conclusions and insights

* We study a very interesting problem:
* Evaluating model performance without ground truths

* We use a very simple method:
* Regression

* Potential Applications:

* Object recognition, detection, segmentation, re-ID,
etc.



Conclusions and insights

* Application scope

* The space spanned by the sample sets should cover the
test sets.

* |f not, there will be failure cases

* Dataset representation
* Aless studied problem
* We use first- and second-order feature statistics and FD
* Better representations?

e Dataset similarity
* We use FD score
e Better similarity estimation?



